Activation of NQO1 in NQO1*2 polymorphic human leukemic HL-60 cells by diet-derived sulforaphane
نویسندگان
چکیده
BACKGROUND The NAD(P)H quinone oxidoreductase (NQO1) confers protection against semiquinones and also elicits oxidative stress. The C609T polymorphism of the NQO1 gene, designated NQO1*2, significantly reduces its enzymatic activity due to rapid degradation of protein. Since down regulation of NQO1 mRNA expression correlates with increased susceptibility for developing different types of cancers, we investigated the link between leukemia and the NQO1*2 genotype by mining a web-based microarray dataset, ONCOMINE. Phytochemicals prevent DNA damage through activation of phase II detoxification enzymes including NQO1. Whether NQO1 expression/activity in leukemia cells that carry the labile NQO1*2 genotype can be induced by broccoli-derived phytochemical sulforaphane (SFN) is currently unknown. METHODS AND RESULTS The ONCOMINE query showed that: (1) acute lymphoblastic leukemia and chronic myelogenous leukemia are associated with reduced NQO1 levels, and (2) under-expressed NQO1 was found in human HL-60 leukemia cell line containing the heterozygous NQO1*2 polymorphism. We examined induction of NQO1 activity/expression by SFN in HL-60 cells. A dose-dependent increase in NQO1 level/activity is accompanied by upregulation of the transcription factor, Nrf2, following 1-10 μM SFN treatment. Treatment with 25 µM SFN drastically reduced NQO1 levels, inhibited cell proliferation, caused sub-G1 cell arrest, and induced apoptosis, and a decrease in the levels of the transcription factor, nuclear factor-κB (NFκB). CONCLUSIONS Up to 10 μM of SFN increases NQO1 expression and suppresses HL-60 cell proliferation whereas ≥ 25 μM of SFN induces apoptosis in HL-60 cells. Further, SFN treatment restores NQO1 activity/levels in HL-60 cells expressing the NQO1*2 genotype.
منابع مشابه
Characterization of the threshold for NAD(P)H:quinone oxidoreductase activity in intact sulforaphane-treated pulmonary arterial endothelial cells.
Treatment of bovine pulmonary arterial endothelial cells in culture with the phase II enzyme inducer sulforaphane (5μM, 24h; sulf-treated) increased cell-lysate NAD(P)H:quinone oxidoreductase (NQO1) activity by 5.7 ± 0.6 (mean ± SEM)-fold, but intact-cell NQO1 activity by only 2.8 ± 0.1-fold compared to control cells. To evaluate the hypothesis that the threshold for sulforaphane-induced intact...
متن کاملNQO1 stabilizes p53 through a distinct pathway.
Wild-type p53 is a tumor-suppressor gene that encodes a short-lived protein that, upon accumulation, induces growth arrest or apoptosis. Accumulation of p53 occurs mainly by posttranslational events that inhibit its proteosomal degradation. We have reported previously that inhibition of NAD(P)H: quinone oxidoreductase 1 (NQO1) activity by dicoumarol induces degradation of p53, indicating that N...
متن کاملReduced formation of depurinating estrogen-DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells.
Sulforaphane (SFN) is a potent inducer of detoxication enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase (GST) via the Kelch-like erythroid-derived protein with CNC homology-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signaling pathway. NQO1 reduces the carcinogenic estrogen metabolite, catechol estrogen-3,4-quinone, whereas GSTs detoxify it th...
متن کاملModulation of the toxicity and macromolecular binding of benzene metabolites by NAD(P)H:Quinone oxidoreductase in transfected HL-60 cells.
Benzene is oxidized in the liver to produce a series of hydroxylated metabolites, including hydroquinone and 1,2,4-benzenetriol. These metabolites are activated to toxic and genotoxic species in the bone marrow via oxidation by myeloperoxidase (MPO). NAD(P)H:quinone oxidoreductase (NQO1) is an enzyme capable of reducing the oxidized quinone metabolites and thereby potentially reducing their tox...
متن کاملInhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin.
NAD(P)H:quinone oxidoreductase 1 (NQO1) regulates the stability of the tumor suppressor WT p53. NQO1 binds and stabilizes WT p53, whereas NQO1 inhibitors including dicoumarol and various other coumarins and flavones induce ubiquitin-independent proteasomal p53 degradation and thus inhibit p53-induced apoptosis. Here, we show that curcumin, a natural phenolic compound found in the spice turmeric...
متن کامل